Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Atomic lattices with covering property
atnem0
Next ⟩
atlatmstc
Metamath Proof Explorer
Ascii
Unicode
Theorem
atnem0
Description:
The meet of distinct atoms is zero. (
atnemeq0
analog.)
(Contributed by
NM
, 5-Nov-2012)
Ref
Expression
Hypotheses
atnem0.m
⊢
∧
˙
=
meet
⁡
K
atnem0.z
⊢
0
˙
=
0.
⁡
K
atnem0.a
⊢
A
=
Atoms
⁡
K
Assertion
atnem0
⊢
K
∈
AtLat
∧
P
∈
A
∧
Q
∈
A
→
P
≠
Q
↔
P
∧
˙
Q
=
0
˙
Proof
Step
Hyp
Ref
Expression
1
atnem0.m
⊢
∧
˙
=
meet
⁡
K
2
atnem0.z
⊢
0
˙
=
0.
⁡
K
3
atnem0.a
⊢
A
=
Atoms
⁡
K
4
eqid
⊢
≤
K
=
≤
K
5
4
3
atncmp
⊢
K
∈
AtLat
∧
P
∈
A
∧
Q
∈
A
→
¬
P
≤
K
Q
↔
P
≠
Q
6
eqid
⊢
Base
K
=
Base
K
7
6
3
atbase
⊢
Q
∈
A
→
Q
∈
Base
K
8
6
4
1
2
3
atnle
⊢
K
∈
AtLat
∧
P
∈
A
∧
Q
∈
Base
K
→
¬
P
≤
K
Q
↔
P
∧
˙
Q
=
0
˙
9
7
8
syl3an3
⊢
K
∈
AtLat
∧
P
∈
A
∧
Q
∈
A
→
¬
P
≤
K
Q
↔
P
∧
˙
Q
=
0
˙
10
5
9
bitr3d
⊢
K
∈
AtLat
∧
P
∈
A
∧
Q
∈
A
→
P
≠
Q
↔
P
∧
˙
Q
=
0
˙