Metamath Proof Explorer


Theorem atnem0

Description: The meet of distinct atoms is zero. ( atnemeq0 analog.) (Contributed by NM, 5-Nov-2012)

Ref Expression
Hypotheses atnem0.m ˙ = meet K
atnem0.z 0 ˙ = 0. K
atnem0.a A = Atoms K
Assertion atnem0 K AtLat P A Q A P Q P ˙ Q = 0 ˙

Proof

Step Hyp Ref Expression
1 atnem0.m ˙ = meet K
2 atnem0.z 0 ˙ = 0. K
3 atnem0.a A = Atoms K
4 eqid K = K
5 4 3 atncmp K AtLat P A Q A ¬ P K Q P Q
6 eqid Base K = Base K
7 6 3 atbase Q A Q Base K
8 6 4 1 2 3 atnle K AtLat P A Q Base K ¬ P K Q P ˙ Q = 0 ˙
9 7 8 syl3an3 K AtLat P A Q A ¬ P K Q P ˙ Q = 0 ˙
10 5 9 bitr3d K AtLat P A Q A P Q P ˙ Q = 0 ˙