Metamath Proof Explorer


Theorem atnemeq0

Description: The meet of distinct atoms is the zero subspace. (Contributed by NM, 25-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion atnemeq0 A HAtoms B HAtoms A B A B = 0

Proof

Step Hyp Ref Expression
1 atsseq B HAtoms A HAtoms B A B = A
2 eqcom B = A A = B
3 1 2 bitrdi B HAtoms A HAtoms B A A = B
4 3 ancoms A HAtoms B HAtoms B A A = B
5 4 necon3bbid A HAtoms B HAtoms ¬ B A A B
6 atelch A HAtoms A C
7 atnssm0 A C B HAtoms ¬ B A A B = 0
8 6 7 sylan A HAtoms B HAtoms ¬ B A A B = 0
9 5 8 bitr3d A HAtoms B HAtoms A B A B = 0