Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Atomic lattices with covering property
atnle0
Next ⟩
atlen0
Metamath Proof Explorer
Ascii
Unicode
Theorem
atnle0
Description:
An atom is not less than or equal to zero.
(Contributed by
NM
, 17-Oct-2011)
Ref
Expression
Hypotheses
atnle0.l
⊢
≤
˙
=
≤
K
atnle0.z
⊢
0
˙
=
0.
⁡
K
atnle0.a
⊢
A
=
Atoms
⁡
K
Assertion
atnle0
⊢
K
∈
AtLat
∧
P
∈
A
→
¬
P
≤
˙
0
˙
Proof
Step
Hyp
Ref
Expression
1
atnle0.l
⊢
≤
˙
=
≤
K
2
atnle0.z
⊢
0
˙
=
0.
⁡
K
3
atnle0.a
⊢
A
=
Atoms
⁡
K
4
atlpos
⊢
K
∈
AtLat
→
K
∈
Poset
5
4
adantr
⊢
K
∈
AtLat
∧
P
∈
A
→
K
∈
Poset
6
eqid
⊢
Base
K
=
Base
K
7
6
2
atl0cl
⊢
K
∈
AtLat
→
0
˙
∈
Base
K
8
7
adantr
⊢
K
∈
AtLat
∧
P
∈
A
→
0
˙
∈
Base
K
9
6
3
atbase
⊢
P
∈
A
→
P
∈
Base
K
10
9
adantl
⊢
K
∈
AtLat
∧
P
∈
A
→
P
∈
Base
K
11
eqid
⊢
⋖
K
=
⋖
K
12
2
11
3
atcvr0
⊢
K
∈
AtLat
∧
P
∈
A
→
0
˙
⋖
K
P
13
6
1
11
cvrnle
⊢
K
∈
Poset
∧
0
˙
∈
Base
K
∧
P
∈
Base
K
∧
0
˙
⋖
K
P
→
¬
P
≤
˙
0
˙
14
5
8
10
12
13
syl31anc
⊢
K
∈
AtLat
∧
P
∈
A
→
¬
P
≤
˙
0
˙