Metamath Proof Explorer


Theorem atnle0

Description: An atom is not less than or equal to zero. (Contributed by NM, 17-Oct-2011)

Ref Expression
Hypotheses atnle0.l ˙ = K
atnle0.z 0 ˙ = 0. K
atnle0.a A = Atoms K
Assertion atnle0 K AtLat P A ¬ P ˙ 0 ˙

Proof

Step Hyp Ref Expression
1 atnle0.l ˙ = K
2 atnle0.z 0 ˙ = 0. K
3 atnle0.a A = Atoms K
4 atlpos K AtLat K Poset
5 4 adantr K AtLat P A K Poset
6 eqid Base K = Base K
7 6 2 atl0cl K AtLat 0 ˙ Base K
8 7 adantr K AtLat P A 0 ˙ Base K
9 6 3 atbase P A P Base K
10 9 adantl K AtLat P A P Base K
11 eqid K = K
12 2 11 3 atcvr0 K AtLat P A 0 ˙ K P
13 6 1 11 cvrnle K Poset 0 ˙ Base K P Base K 0 ˙ K P ¬ P ˙ 0 ˙
14 5 8 10 12 13 syl31anc K AtLat P A ¬ P ˙ 0 ˙