Metamath Proof Explorer


Theorem atnlt

Description: Two atoms cannot satisfy the less than relation. (Contributed by NM, 7-Feb-2012)

Ref Expression
Hypotheses atnlt.s < ˙ = < K
atnlt.a A = Atoms K
Assertion atnlt K AtLat P A Q A ¬ P < ˙ Q

Proof

Step Hyp Ref Expression
1 atnlt.s < ˙ = < K
2 atnlt.a A = Atoms K
3 1 pltirr K AtLat P A ¬ P < ˙ P
4 3 3adant3 K AtLat P A Q A ¬ P < ˙ P
5 breq2 P = Q P < ˙ P P < ˙ Q
6 5 notbid P = Q ¬ P < ˙ P ¬ P < ˙ Q
7 4 6 syl5ibcom K AtLat P A Q A P = Q ¬ P < ˙ Q
8 eqid K = K
9 8 1 pltle K AtLat P A Q A P < ˙ Q P K Q
10 8 2 atcmp K AtLat P A Q A P K Q P = Q
11 9 10 sylibd K AtLat P A Q A P < ˙ Q P = Q
12 11 necon3ad K AtLat P A Q A P Q ¬ P < ˙ Q
13 7 12 pm2.61dne K AtLat P A Q A ¬ P < ˙ Q