Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Atomic lattices with covering property
atnlt
Next ⟩
atcvreq0
Metamath Proof Explorer
Ascii
Unicode
Theorem
atnlt
Description:
Two atoms cannot satisfy the less than relation.
(Contributed by
NM
, 7-Feb-2012)
Ref
Expression
Hypotheses
atnlt.s
⊢
<
˙
=
<
K
atnlt.a
⊢
A
=
Atoms
⁡
K
Assertion
atnlt
⊢
K
∈
AtLat
∧
P
∈
A
∧
Q
∈
A
→
¬
P
<
˙
Q
Proof
Step
Hyp
Ref
Expression
1
atnlt.s
⊢
<
˙
=
<
K
2
atnlt.a
⊢
A
=
Atoms
⁡
K
3
1
pltirr
⊢
K
∈
AtLat
∧
P
∈
A
→
¬
P
<
˙
P
4
3
3adant3
⊢
K
∈
AtLat
∧
P
∈
A
∧
Q
∈
A
→
¬
P
<
˙
P
5
breq2
⊢
P
=
Q
→
P
<
˙
P
↔
P
<
˙
Q
6
5
notbid
⊢
P
=
Q
→
¬
P
<
˙
P
↔
¬
P
<
˙
Q
7
4
6
syl5ibcom
⊢
K
∈
AtLat
∧
P
∈
A
∧
Q
∈
A
→
P
=
Q
→
¬
P
<
˙
Q
8
eqid
⊢
≤
K
=
≤
K
9
8
1
pltle
⊢
K
∈
AtLat
∧
P
∈
A
∧
Q
∈
A
→
P
<
˙
Q
→
P
≤
K
Q
10
8
2
atcmp
⊢
K
∈
AtLat
∧
P
∈
A
∧
Q
∈
A
→
P
≤
K
Q
↔
P
=
Q
11
9
10
sylibd
⊢
K
∈
AtLat
∧
P
∈
A
∧
Q
∈
A
→
P
<
˙
Q
→
P
=
Q
12
11
necon3ad
⊢
K
∈
AtLat
∧
P
∈
A
∧
Q
∈
A
→
P
≠
Q
→
¬
P
<
˙
Q
13
7
12
pm2.61dne
⊢
K
∈
AtLat
∧
P
∈
A
∧
Q
∈
A
→
¬
P
<
˙
Q