Metamath Proof Explorer


Theorem atoml2i

Description: An assertion holding in atomic orthomodular lattices that is equivalent to the exchange axiom. Proposition P8(ii) of BeltramettiCassinelli1 p. 400. (Contributed by NM, 12-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypothesis atoml.1 A C
Assertion atoml2i B HAtoms ¬ B A A B A HAtoms

Proof

Step Hyp Ref Expression
1 atoml.1 A C
2 atelch B HAtoms B C
3 pjoml5 A C B C A A A B = A B
4 1 2 3 sylancr B HAtoms A A A B = A B
5 incom A B A = A A B
6 5 eqeq1i A B A = 0 A A B = 0
7 6 biimpi A B A = 0 A A B = 0
8 7 oveq2d A B A = 0 A A A B = A 0
9 1 chj0i A 0 = A
10 8 9 syl6eq A B A = 0 A A A B = A
11 4 10 sylan9req B HAtoms A B A = 0 A B = A
12 11 ex B HAtoms A B A = 0 A B = A
13 chlejb2 B C A C B A A B = A
14 2 1 13 sylancl B HAtoms B A A B = A
15 12 14 sylibrd B HAtoms A B A = 0 B A
16 15 con3d B HAtoms ¬ B A ¬ A B A = 0
17 1 atomli B HAtoms A B A HAtoms 0
18 elun A B A HAtoms 0 A B A HAtoms A B A 0
19 h0elch 0 C
20 19 elexi 0 V
21 20 elsn2 A B A 0 A B A = 0
22 21 orbi2i A B A HAtoms A B A 0 A B A HAtoms A B A = 0
23 orcom A B A HAtoms A B A = 0 A B A = 0 A B A HAtoms
24 18 22 23 3bitri A B A HAtoms 0 A B A = 0 A B A HAtoms
25 17 24 sylib B HAtoms A B A = 0 A B A HAtoms
26 25 ord B HAtoms ¬ A B A = 0 A B A HAtoms
27 16 26 syld B HAtoms ¬ B A A B A HAtoms
28 27 imp B HAtoms ¬ B A A B A HAtoms