Metamath Proof Explorer


Theorem atord

Description: An ordering law for a Hilbert lattice atom and a commuting subspace. (Contributed by NM, 12-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion atord A C B HAtoms A 𝐶 B B A B A

Proof

Step Hyp Ref Expression
1 breq1 A = if A C A 0 A 𝐶 B if A C A 0 𝐶 B
2 1 anbi2d A = if A C A 0 B HAtoms A 𝐶 B B HAtoms if A C A 0 𝐶 B
3 sseq2 A = if A C A 0 B A B if A C A 0
4 fveq2 A = if A C A 0 A = if A C A 0
5 4 sseq2d A = if A C A 0 B A B if A C A 0
6 3 5 orbi12d A = if A C A 0 B A B A B if A C A 0 B if A C A 0
7 2 6 imbi12d A = if A C A 0 B HAtoms A 𝐶 B B A B A B HAtoms if A C A 0 𝐶 B B if A C A 0 B if A C A 0
8 h0elch 0 C
9 8 elimel if A C A 0 C
10 9 atordi B HAtoms if A C A 0 𝐶 B B if A C A 0 B if A C A 0
11 7 10 dedth A C B HAtoms A 𝐶 B B A B A
12 11 3impib A C B HAtoms A 𝐶 B B A B A