Metamath Proof Explorer
Description: The set of atoms is a subset of the base set. ( atssch analog.)
(Contributed by NM, 21-Oct-2011)
|
|
Ref |
Expression |
|
Hypotheses |
atombase.b |
|
|
|
atombase.a |
|
|
Assertion |
atssbase |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
atombase.b |
|
| 2 |
|
atombase.a |
|
| 3 |
1 2
|
atbase |
|
| 4 |
3
|
ssriv |
|