Metamath Proof Explorer


Theorem atssma

Description: The meet with an atom's superset is the atom. (Contributed by NM, 12-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion atssma A HAtoms B C A B A B HAtoms

Proof

Step Hyp Ref Expression
1 df-ss A B A B = A
2 1 biimpi A B A B = A
3 2 eleq1d A B A B HAtoms A HAtoms
4 3 biimprcd A HAtoms A B A B HAtoms
5 4 adantr A HAtoms B C A B A B HAtoms
6 incom A B = B A
7 6 eleq1i A B HAtoms B A HAtoms
8 atne0 B A HAtoms B A 0
9 8 neneqd B A HAtoms ¬ B A = 0
10 7 9 sylbi A B HAtoms ¬ B A = 0
11 atnssm0 B C A HAtoms ¬ A B B A = 0
12 11 ancoms A HAtoms B C ¬ A B B A = 0
13 12 biimpd A HAtoms B C ¬ A B B A = 0
14 13 con1d A HAtoms B C ¬ B A = 0 A B
15 10 14 syl5 A HAtoms B C A B HAtoms A B
16 5 15 impbid A HAtoms B C A B A B HAtoms