Metamath Proof Explorer


Theorem ausgrumgri

Description: If an alternatively defined simple graph has the vertices and edges of an arbitrary graph, the arbitrary graph is an undirected multigraph. (Contributed by AV, 18-Oct-2020) (Revised by AV, 25-Nov-2020)

Ref Expression
Hypothesis ausgr.1 G = v e | e x 𝒫 v | x = 2
Assertion ausgrumgri H W Vtx H G Edg H Fun iEdg H H UMGraph

Proof

Step Hyp Ref Expression
1 ausgr.1 G = v e | e x 𝒫 v | x = 2
2 fvex Vtx H V
3 fvex Edg H V
4 1 isausgr Vtx H V Edg H V Vtx H G Edg H Edg H x 𝒫 Vtx H | x = 2
5 2 3 4 mp2an Vtx H G Edg H Edg H x 𝒫 Vtx H | x = 2
6 edgval Edg H = ran iEdg H
7 6 a1i H W Edg H = ran iEdg H
8 7 sseq1d H W Edg H x 𝒫 Vtx H | x = 2 ran iEdg H x 𝒫 Vtx H | x = 2
9 funfn Fun iEdg H iEdg H Fn dom iEdg H
10 9 biimpi Fun iEdg H iEdg H Fn dom iEdg H
11 10 3ad2ant3 H W ran iEdg H x 𝒫 Vtx H | x = 2 Fun iEdg H iEdg H Fn dom iEdg H
12 simp2 H W ran iEdg H x 𝒫 Vtx H | x = 2 Fun iEdg H ran iEdg H x 𝒫 Vtx H | x = 2
13 df-f iEdg H : dom iEdg H x 𝒫 Vtx H | x = 2 iEdg H Fn dom iEdg H ran iEdg H x 𝒫 Vtx H | x = 2
14 11 12 13 sylanbrc H W ran iEdg H x 𝒫 Vtx H | x = 2 Fun iEdg H iEdg H : dom iEdg H x 𝒫 Vtx H | x = 2
15 14 3exp H W ran iEdg H x 𝒫 Vtx H | x = 2 Fun iEdg H iEdg H : dom iEdg H x 𝒫 Vtx H | x = 2
16 8 15 sylbid H W Edg H x 𝒫 Vtx H | x = 2 Fun iEdg H iEdg H : dom iEdg H x 𝒫 Vtx H | x = 2
17 5 16 syl5bi H W Vtx H G Edg H Fun iEdg H iEdg H : dom iEdg H x 𝒫 Vtx H | x = 2
18 17 3imp H W Vtx H G Edg H Fun iEdg H iEdg H : dom iEdg H x 𝒫 Vtx H | x = 2
19 eqid Vtx H = Vtx H
20 eqid iEdg H = iEdg H
21 19 20 isumgrs H W H UMGraph iEdg H : dom iEdg H x 𝒫 Vtx H | x = 2
22 21 3ad2ant1 H W Vtx H G Edg H Fun iEdg H H UMGraph iEdg H : dom iEdg H x 𝒫 Vtx H | x = 2
23 18 22 mpbird H W Vtx H G Edg H Fun iEdg H H UMGraph