Description: The equivalence of the definitions of a simple graph. (Contributed by Alexander van der Vekens, 28-Aug-2017) (Revised by AV, 14-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ausgr.1 | |
|
Assertion | ausgrusgrb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ausgr.1 | |
|
2 | 1 | isausgr | |
3 | f1oi | |
|
4 | dff1o5 | |
|
5 | f1ss | |
|
6 | dmresi | |
|
7 | 6 | eqcomi | |
8 | f1eq2 | |
|
9 | 7 8 | ax-mp | |
10 | 5 9 | sylib | |
11 | 10 | ex | |
12 | 11 | a1d | |
13 | 12 | adantr | |
14 | 4 13 | sylbi | |
15 | 3 14 | ax-mp | |
16 | df-f | |
|
17 | rnresi | |
|
18 | 17 | sseq1i | |
19 | 18 | biimpi | |
20 | 19 | a1d | |
21 | 16 20 | simplbiim | |
22 | f1f | |
|
23 | 21 22 | syl11 | |
24 | 15 23 | impbid | |
25 | resiexg | |
|
26 | opiedgfv | |
|
27 | 25 26 | sylan2 | |
28 | 27 | dmeqd | |
29 | opvtxfv | |
|
30 | 25 29 | sylan2 | |
31 | 30 | pweqd | |
32 | 31 | rabeqdv | |
33 | 27 28 32 | f1eq123d | |
34 | 24 33 | bitr4d | |
35 | opex | |
|
36 | eqid | |
|
37 | eqid | |
|
38 | 36 37 | isusgrs | |
39 | 35 38 | ax-mp | |
40 | 39 | bicomi | |
41 | 40 | a1i | |
42 | 2 34 41 | 3bitrd | |