Metamath Proof Explorer


Theorem avgle

Description: The average of two numbers is less than or equal to at least one of them. (Contributed by NM, 9-Dec-2005) (Revised by Mario Carneiro, 28-May-2014)

Ref Expression
Assertion avgle A B A + B 2 A A + B 2 B

Proof

Step Hyp Ref Expression
1 letric A B A B B A
2 1 orcomd A B B A A B
3 avgle2 B A B A B + A 2 A
4 3 ancoms A B B A B + A 2 A
5 recn A A
6 recn B B
7 addcom A B A + B = B + A
8 5 6 7 syl2an A B A + B = B + A
9 8 oveq1d A B A + B 2 = B + A 2
10 9 breq1d A B A + B 2 A B + A 2 A
11 4 10 bitr4d A B B A A + B 2 A
12 avgle2 A B A B A + B 2 B
13 11 12 orbi12d A B B A A B A + B 2 A A + B 2 B
14 2 13 mpbid A B A + B 2 A A + B 2 B