Metamath Proof Explorer


Theorem avgle1

Description: Ordering property for average. (Contributed by Mario Carneiro, 28-May-2014)

Ref Expression
Assertion avgle1 A B A B A A + B 2

Proof

Step Hyp Ref Expression
1 avglt2 B A B < A B + A 2 < A
2 1 ancoms A B B < A B + A 2 < A
3 recn A A
4 recn B B
5 addcom A B A + B = B + A
6 3 4 5 syl2an A B A + B = B + A
7 6 oveq1d A B A + B 2 = B + A 2
8 7 breq1d A B A + B 2 < A B + A 2 < A
9 2 8 bitr4d A B B < A A + B 2 < A
10 9 notbid A B ¬ B < A ¬ A + B 2 < A
11 lenlt A B A B ¬ B < A
12 readdcl A B A + B
13 rehalfcl A + B A + B 2
14 12 13 syl A B A + B 2
15 lenlt A A + B 2 A A + B 2 ¬ A + B 2 < A
16 14 15 syldan A B A A + B 2 ¬ A + B 2 < A
17 10 11 16 3bitr4d A B A B A A + B 2