Database
REAL AND COMPLEX NUMBERS
Integer sets
Simple number properties
avgle1
Next ⟩
avgle2
Metamath Proof Explorer
Ascii
Unicode
Theorem
avgle1
Description:
Ordering property for average.
(Contributed by
Mario Carneiro
, 28-May-2014)
Ref
Expression
Assertion
avgle1
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
≤
B
↔
A
≤
A
+
B
2
Proof
Step
Hyp
Ref
Expression
1
avglt2
⊢
B
∈
ℝ
∧
A
∈
ℝ
→
B
<
A
↔
B
+
A
2
<
A
2
1
ancoms
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
B
<
A
↔
B
+
A
2
<
A
3
recn
⊢
A
∈
ℝ
→
A
∈
ℂ
4
recn
⊢
B
∈
ℝ
→
B
∈
ℂ
5
addcom
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
+
B
=
B
+
A
6
3
4
5
syl2an
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
+
B
=
B
+
A
7
6
oveq1d
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
+
B
2
=
B
+
A
2
8
7
breq1d
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
+
B
2
<
A
↔
B
+
A
2
<
A
9
2
8
bitr4d
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
B
<
A
↔
A
+
B
2
<
A
10
9
notbid
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
¬
B
<
A
↔
¬
A
+
B
2
<
A
11
lenlt
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
≤
B
↔
¬
B
<
A
12
readdcl
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
+
B
∈
ℝ
13
rehalfcl
⊢
A
+
B
∈
ℝ
→
A
+
B
2
∈
ℝ
14
12
13
syl
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
+
B
2
∈
ℝ
15
lenlt
⊢
A
∈
ℝ
∧
A
+
B
2
∈
ℝ
→
A
≤
A
+
B
2
↔
¬
A
+
B
2
<
A
16
14
15
syldan
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
≤
A
+
B
2
↔
¬
A
+
B
2
<
A
17
10
11
16
3bitr4d
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
≤
B
↔
A
≤
A
+
B
2