Metamath Proof Explorer


Theorem avgle2

Description: Ordering property for average. (Contributed by Jeff Hankins, 15-Sep-2013) (Revised by Mario Carneiro, 28-May-2014)

Ref Expression
Assertion avgle2 A B A B A + B 2 B

Proof

Step Hyp Ref Expression
1 avglt1 B A B < A B < B + A 2
2 1 ancoms A B B < A B < B + A 2
3 recn A A
4 recn B B
5 addcom A B A + B = B + A
6 3 4 5 syl2an A B A + B = B + A
7 6 oveq1d A B A + B 2 = B + A 2
8 7 breq2d A B B < A + B 2 B < B + A 2
9 2 8 bitr4d A B B < A B < A + B 2
10 9 notbid A B ¬ B < A ¬ B < A + B 2
11 lenlt A B A B ¬ B < A
12 readdcl A B A + B
13 rehalfcl A + B A + B 2
14 12 13 syl A B A + B 2
15 lenlt A + B 2 B A + B 2 B ¬ B < A + B 2
16 14 15 sylancom A B A + B 2 B ¬ B < A + B 2
17 10 11 16 3bitr4d A B A B A + B 2 B