Metamath Proof Explorer


Theorem avglt1

Description: Ordering property for average. (Contributed by Mario Carneiro, 28-May-2014)

Ref Expression
Assertion avglt1 A B A < B A < A + B 2

Proof

Step Hyp Ref Expression
1 ltadd2 A B A A < B A + A < A + B
2 1 3anidm13 A B A < B A + A < A + B
3 simpl A B A
4 3 recnd A B A
5 times2 A A 2 = A + A
6 4 5 syl A B A 2 = A + A
7 6 breq1d A B A 2 < A + B A + A < A + B
8 readdcl A B A + B
9 2re 2
10 2pos 0 < 2
11 9 10 pm3.2i 2 0 < 2
12 11 a1i A B 2 0 < 2
13 ltmuldiv A A + B 2 0 < 2 A 2 < A + B A < A + B 2
14 3 8 12 13 syl3anc A B A 2 < A + B A < A + B 2
15 2 7 14 3bitr2d A B A < B A < A + B 2