Database
REAL AND COMPLEX NUMBERS
Integer sets
Simple number properties
avglt1
Next ⟩
avglt2
Metamath Proof Explorer
Ascii
Unicode
Theorem
avglt1
Description:
Ordering property for average.
(Contributed by
Mario Carneiro
, 28-May-2014)
Ref
Expression
Assertion
avglt1
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
<
B
↔
A
<
A
+
B
2
Proof
Step
Hyp
Ref
Expression
1
ltadd2
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
A
∈
ℝ
→
A
<
B
↔
A
+
A
<
A
+
B
2
1
3anidm13
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
<
B
↔
A
+
A
<
A
+
B
3
simpl
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
∈
ℝ
4
3
recnd
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
∈
ℂ
5
times2
⊢
A
∈
ℂ
→
A
⋅
2
=
A
+
A
6
4
5
syl
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
⋅
2
=
A
+
A
7
6
breq1d
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
⋅
2
<
A
+
B
↔
A
+
A
<
A
+
B
8
readdcl
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
+
B
∈
ℝ
9
2re
⊢
2
∈
ℝ
10
2pos
⊢
0
<
2
11
9
10
pm3.2i
⊢
2
∈
ℝ
∧
0
<
2
12
11
a1i
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
2
∈
ℝ
∧
0
<
2
13
ltmuldiv
⊢
A
∈
ℝ
∧
A
+
B
∈
ℝ
∧
2
∈
ℝ
∧
0
<
2
→
A
⋅
2
<
A
+
B
↔
A
<
A
+
B
2
14
3
8
12
13
syl3anc
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
⋅
2
<
A
+
B
↔
A
<
A
+
B
2
15
2
7
14
3bitr2d
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
<
B
↔
A
<
A
+
B
2