Database
REAL AND COMPLEX NUMBERS
Integer sets
Simple number properties
avglt2
Next ⟩
avgle1
Metamath Proof Explorer
Ascii
Unicode
Theorem
avglt2
Description:
Ordering property for average.
(Contributed by
Mario Carneiro
, 28-May-2014)
Ref
Expression
Assertion
avglt2
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
<
B
↔
A
+
B
2
<
B
Proof
Step
Hyp
Ref
Expression
1
simpr
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
B
∈
ℝ
2
1
recnd
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
B
∈
ℂ
3
2times
⊢
B
∈
ℂ
→
2
⁢
B
=
B
+
B
4
2
3
syl
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
2
⁢
B
=
B
+
B
5
4
breq2d
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
+
B
<
2
⁢
B
↔
A
+
B
<
B
+
B
6
readdcl
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
+
B
∈
ℝ
7
2re
⊢
2
∈
ℝ
8
2pos
⊢
0
<
2
9
7
8
pm3.2i
⊢
2
∈
ℝ
∧
0
<
2
10
9
a1i
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
2
∈
ℝ
∧
0
<
2
11
ltdivmul
⊢
A
+
B
∈
ℝ
∧
B
∈
ℝ
∧
2
∈
ℝ
∧
0
<
2
→
A
+
B
2
<
B
↔
A
+
B
<
2
⁢
B
12
6
1
10
11
syl3anc
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
+
B
2
<
B
↔
A
+
B
<
2
⁢
B
13
ltadd1
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
B
∈
ℝ
→
A
<
B
↔
A
+
B
<
B
+
B
14
13
3anidm23
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
<
B
↔
A
+
B
<
B
+
B
15
5
12
14
3bitr4rd
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
<
B
↔
A
+
B
2
<
B