Metamath Proof Explorer


Theorem avglt2

Description: Ordering property for average. (Contributed by Mario Carneiro, 28-May-2014)

Ref Expression
Assertion avglt2 A B A < B A + B 2 < B

Proof

Step Hyp Ref Expression
1 simpr A B B
2 1 recnd A B B
3 2times B 2 B = B + B
4 2 3 syl A B 2 B = B + B
5 4 breq2d A B A + B < 2 B A + B < B + B
6 readdcl A B A + B
7 2re 2
8 2pos 0 < 2
9 7 8 pm3.2i 2 0 < 2
10 9 a1i A B 2 0 < 2
11 ltdivmul A + B B 2 0 < 2 A + B 2 < B A + B < 2 B
12 6 1 10 11 syl3anc A B A + B 2 < B A + B < 2 B
13 ltadd1 A B B A < B A + B < B + B
14 13 3anidm23 A B A < B A + B < B + B
15 5 12 14 3bitr4rd A B A < B A + B 2 < B