Description: Axiom of Quantifier Introduction. One of the equality and substitution axioms for a non-logical predicate in our predicate calculus with equality. Axiom scheme C14' in Megill p. 448 (p. 16 of the preprint). It is redundant if we include ax-5 ; see Theorem axc14 . Alternately, ax-5 becomes unnecessary in principle with this axiom, but we lose the more powerful metalogic afforded by ax-5 . We retain ax-c14 here to provide completeness for systems with the simpler metalogic that results from omitting ax-5 , which might be easier to study for some theoretical purposes.
This axiom is obsolete and should no longer be used. It is proved above as Theorem axc14 . (Contributed by NM, 24-Jun-1993) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | ax-c14 |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | vz | ||
1 | 0 | cv | |
2 | vx | ||
3 | 2 | cv | |
4 | 1 3 | wceq | |
5 | 4 0 | wal | |
6 | 5 | wn | |
7 | vy | ||
8 | 7 | cv | |
9 | 1 8 | wceq | |
10 | 9 0 | wal | |
11 | 10 | wn | |
12 | 3 8 | wcel | |
13 | 12 0 | wal | |
14 | 12 13 | wi | |
15 | 11 14 | wi | |
16 | 6 15 | wi |