Metamath Proof Explorer


Axiom ax-hcompl

Description: Completeness of a Hilbert space. (Contributed by NM, 7-Aug-2000) (New usage is discouraged.)

Ref Expression
Assertion ax-hcompl F Cauchy x F v x

Detailed syntax breakdown

Step Hyp Ref Expression
0 cF class F
1 ccauold class Cauchy
2 0 1 wcel wff F Cauchy
3 vx setvar x
4 chba class
5 chli class v
6 3 cv setvar x
7 0 6 5 wbr wff F v x
8 7 3 4 wrex wff x F v x
9 2 8 wi wff F Cauchy x F v x