Metamath Proof Explorer


Axiom ax-his2

Description: Distributive law for inner product. Postulate (S2) of Beran p. 95. (Contributed by NM, 31-Jul-1999) (New usage is discouraged.)

Ref Expression
Assertion ax-his2 A B C A + B ih C = A ih C + B ih C

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA class A
1 chba class
2 0 1 wcel wff A
3 cB class B
4 3 1 wcel wff B
5 cC class C
6 5 1 wcel wff C
7 2 4 6 w3a wff A B C
8 cva class +
9 0 3 8 co class A + B
10 csp class ih
11 9 5 10 co class A + B ih C
12 0 5 10 co class A ih C
13 caddc class +
14 3 5 10 co class B ih C
15 12 14 13 co class A ih C + B ih C
16 11 15 wceq wff A + B ih C = A ih C + B ih C
17 7 16 wi wff A B C A + B ih C = A ih C + B ih C