Metamath Proof Explorer


Axiom ax-his4

Description: Identity law for inner product. Postulate (S4) of Beran p. 95. (Contributed by NM, 29-May-1999) (New usage is discouraged.)

Ref Expression
Assertion ax-his4 A A 0 0 < A ih A

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA class A
1 chba class
2 0 1 wcel wff A
3 c0v class 0
4 0 3 wne wff A 0
5 2 4 wa wff A A 0
6 cc0 class 0
7 clt class <
8 csp class ih
9 0 0 8 co class A ih A
10 6 9 7 wbr wff 0 < A ih A
11 5 10 wi wff A A 0 0 < A ih A