Metamath Proof Explorer


Axiom ax-hvass

Description: Vector addition is associative. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)

Ref Expression
Assertion ax-hvass A B C A + B + C = A + B + C

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA class A
1 chba class
2 0 1 wcel wff A
3 cB class B
4 3 1 wcel wff B
5 cC class C
6 5 1 wcel wff C
7 2 4 6 w3a wff A B C
8 cva class +
9 0 3 8 co class A + B
10 9 5 8 co class A + B + C
11 3 5 8 co class B + C
12 0 11 8 co class A + B + C
13 10 12 wceq wff A + B + C = A + B + C
14 7 13 wi wff A B C A + B + C = A + B + C