Metamath Proof Explorer


Axiom ax-hvcom

Description: Vector addition is commutative. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)

Ref Expression
Assertion ax-hvcom A B A + B = B + A

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA class A
1 chba class
2 0 1 wcel wff A
3 cB class B
4 3 1 wcel wff B
5 2 4 wa wff A B
6 cva class +
7 0 3 6 co class A + B
8 3 0 6 co class B + A
9 7 8 wceq wff A + B = B + A
10 5 9 wi wff A B A + B = B + A