Metamath Proof Explorer


Axiom ax-hvdistr2

Description: Scalar multiplication distributive law. (Contributed by NM, 30-May-1999) (New usage is discouraged.)

Ref Expression
Assertion ax-hvdistr2 A B C A + B C = A C + B C

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA class A
1 cc class
2 0 1 wcel wff A
3 cB class B
4 3 1 wcel wff B
5 cC class C
6 chba class
7 5 6 wcel wff C
8 2 4 7 w3a wff A B C
9 caddc class +
10 0 3 9 co class A + B
11 csm class
12 10 5 11 co class A + B C
13 0 5 11 co class A C
14 cva class +
15 3 5 11 co class B C
16 13 15 14 co class A C + B C
17 12 16 wceq wff A + B C = A C + B C
18 8 17 wi wff A B C A + B C = A C + B C