Metamath Proof Explorer


Axiom ax-hvmulass

Description: Scalar multiplication associative law. (Contributed by NM, 30-May-1999) (New usage is discouraged.)

Ref Expression
Assertion ax-hvmulass A B C A B C = A B C

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA class A
1 cc class
2 0 1 wcel wff A
3 cB class B
4 3 1 wcel wff B
5 cC class C
6 chba class
7 5 6 wcel wff C
8 2 4 7 w3a wff A B C
9 cmul class ×
10 0 3 9 co class A B
11 csm class
12 10 5 11 co class A B C
13 3 5 11 co class B C
14 0 13 11 co class A B C
15 12 14 wceq wff A B C = A B C
16 8 15 wi wff A B C A B C = A B C