Metamath Proof Explorer


Axiom ax-reg

Description: Axiom of Regularity. An axiom of Zermelo-Fraenkel set theory. Also called the Axiom of Foundation. A rather non-intuitive axiom that denies more than it asserts, it states (in the form of zfreg ) that every nonempty set contains a set disjoint from itself. One consequence is that it denies the existence of a set containing itself ( elirrv ). A stronger version that works for proper classes is proved as zfregs . (Contributed by NM, 14-Aug-1993)

Ref Expression
Assertion ax-reg y y x y y x z z y ¬ z x

Detailed syntax breakdown

Step Hyp Ref Expression
0 vy setvar y
1 0 cv setvar y
2 vx setvar x
3 2 cv setvar x
4 1 3 wcel wff y x
5 4 0 wex wff y y x
6 vz setvar z
7 6 cv setvar z
8 7 1 wcel wff z y
9 7 3 wcel wff z x
10 9 wn wff ¬ z x
11 8 10 wi wff z y ¬ z x
12 11 6 wal wff z z y ¬ z x
13 4 12 wa wff y x z z y ¬ z x
14 13 0 wex wff y y x z z y ¬ z x
15 5 14 wi wff y y x y y x z z y ¬ z x