Metamath Proof Explorer


Theorem ax12b

Description: A bidirectional version of axc15 . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 30-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion ax12b ¬ x x = y x = y φ x x = y φ

Proof

Step Hyp Ref Expression
1 axc15 ¬ x x = y x = y φ x x = y φ
2 1 imp ¬ x x = y x = y φ x x = y φ
3 sp x x = y φ x = y φ
4 3 com12 x = y x x = y φ φ
5 4 adantl ¬ x x = y x = y x x = y φ φ
6 2 5 impbid ¬ x x = y x = y φ x x = y φ