Step |
Hyp |
Ref |
Expression |
1 |
|
19.26 |
|
2 |
|
elequ1 |
|
3 |
|
elequ2 |
|
4 |
2 3
|
bitrd |
|
5 |
4
|
adantl |
|
6 |
|
ax-5 |
|
7 |
|
ax-5 |
|
8 |
|
elequ1 |
|
9 |
|
elequ2 |
|
10 |
8 9
|
bitrd |
|
11 |
6 7 10
|
dvelimf-o |
|
12 |
4
|
biimprcd |
|
13 |
12
|
alimi |
|
14 |
11 13
|
syl6 |
|
15 |
14
|
adantr |
|
16 |
5 15
|
sylbid |
|
17 |
16
|
adantl |
|
18 |
|
elequ1 |
|
19 |
|
elequ2 |
|
20 |
18 19
|
sylan9bb |
|
21 |
20
|
sps-o |
|
22 |
|
nfa1-o |
|
23 |
21
|
imbi2d |
|
24 |
22 23
|
albid |
|
25 |
21 24
|
imbi12d |
|
26 |
25
|
adantr |
|
27 |
17 26
|
mpbid |
|
28 |
27
|
exp32 |
|
29 |
1 28
|
sylbir |
|
30 |
|
elequ1 |
|
31 |
30
|
ad2antll |
|
32 |
|
ax-c14 |
|
33 |
32
|
impcom |
|
34 |
33
|
adantrr |
|
35 |
30
|
biimprcd |
|
36 |
35
|
alimi |
|
37 |
34 36
|
syl6 |
|
38 |
31 37
|
sylbid |
|
39 |
38
|
adantll |
|
40 |
|
elequ1 |
|
41 |
40
|
sps-o |
|
42 |
41
|
imbi2d |
|
43 |
42
|
dral2-o |
|
44 |
41 43
|
imbi12d |
|
45 |
44
|
ad2antrr |
|
46 |
39 45
|
mpbid |
|
47 |
46
|
exp32 |
|
48 |
|
elequ2 |
|
49 |
48
|
ad2antll |
|
50 |
|
ax-c14 |
|
51 |
50
|
imp |
|
52 |
51
|
adantrr |
|
53 |
48
|
biimprcd |
|
54 |
53
|
alimi |
|
55 |
52 54
|
syl6 |
|
56 |
49 55
|
sylbid |
|
57 |
56
|
adantlr |
|
58 |
19
|
sps-o |
|
59 |
58
|
imbi2d |
|
60 |
59
|
dral2-o |
|
61 |
58 60
|
imbi12d |
|
62 |
61
|
ad2antlr |
|
63 |
57 62
|
mpbid |
|
64 |
63
|
exp32 |
|
65 |
|
ax6ev |
|
66 |
|
ax6ev |
|
67 |
|
ax-1 |
|
68 |
67
|
alrimiv |
|
69 |
|
elequ1 |
|
70 |
|
elequ2 |
|
71 |
69 70
|
sylan9bb |
|
72 |
71
|
adantl |
|
73 |
|
dveeq2-o |
|
74 |
|
dveeq2-o |
|
75 |
73 74
|
im2anan9 |
|
76 |
75
|
imp |
|
77 |
|
19.26 |
|
78 |
76 77
|
sylibr |
|
79 |
|
nfa1-o |
|
80 |
71
|
sps-o |
|
81 |
80
|
imbi2d |
|
82 |
79 81
|
albid |
|
83 |
78 82
|
syl |
|
84 |
72 83
|
imbi12d |
|
85 |
68 84
|
mpbii |
|
86 |
85
|
exp32 |
|
87 |
86
|
exlimdv |
|
88 |
66 87
|
mpi |
|
89 |
88
|
exlimdv |
|
90 |
65 89
|
mpi |
|
91 |
90
|
a1d |
|
92 |
91
|
a1d |
|
93 |
29 47 64 92
|
4cases |
|