Metamath Proof Explorer


Theorem ax12el

Description: Basis step for constructing a substitution instance of ax-c15 without using ax-c15 . Atomic formula for membership predicate. (Contributed by NM, 22-Jan-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ax12el ¬ x x = y x = y z w x x = y z w

Proof

Step Hyp Ref Expression
1 19.26 x x = z x = w x x = z x x = w
2 elequ1 x = y x x y x
3 elequ2 x = y y x y y
4 2 3 bitrd x = y x x y y
5 4 adantl ¬ x x = y x = y x x y y
6 ax-5 v v x v v
7 ax-5 y y v y y
8 elequ1 v = y v v y v
9 elequ2 v = y y v y y
10 8 9 bitrd v = y v v y y
11 6 7 10 dvelimf-o ¬ x x = y y y x y y
12 4 biimprcd y y x = y x x
13 12 alimi x y y x x = y x x
14 11 13 syl6 ¬ x x = y y y x x = y x x
15 14 adantr ¬ x x = y x = y y y x x = y x x
16 5 15 sylbid ¬ x x = y x = y x x x x = y x x
17 16 adantl x x = z x = w ¬ x x = y x = y x x x x = y x x
18 elequ1 x = z x x z x
19 elequ2 x = w z x z w
20 18 19 sylan9bb x = z x = w x x z w
21 20 sps-o x x = z x = w x x z w
22 nfa1-o x x x = z x = w
23 21 imbi2d x x = z x = w x = y x x x = y z w
24 22 23 albid x x = z x = w x x = y x x x x = y z w
25 21 24 imbi12d x x = z x = w x x x x = y x x z w x x = y z w
26 25 adantr x x = z x = w ¬ x x = y x = y x x x x = y x x z w x x = y z w
27 17 26 mpbid x x = z x = w ¬ x x = y x = y z w x x = y z w
28 27 exp32 x x = z x = w ¬ x x = y x = y z w x x = y z w
29 1 28 sylbir x x = z x x = w ¬ x x = y x = y z w x x = y z w
30 elequ1 x = y x w y w
31 30 ad2antll ¬ x x = w ¬ x x = y x = y x w y w
32 ax-c14 ¬ x x = y ¬ x x = w y w x y w
33 32 impcom ¬ x x = w ¬ x x = y y w x y w
34 33 adantrr ¬ x x = w ¬ x x = y x = y y w x y w
35 30 biimprcd y w x = y x w
36 35 alimi x y w x x = y x w
37 34 36 syl6 ¬ x x = w ¬ x x = y x = y y w x x = y x w
38 31 37 sylbid ¬ x x = w ¬ x x = y x = y x w x x = y x w
39 38 adantll x x = z ¬ x x = w ¬ x x = y x = y x w x x = y x w
40 elequ1 x = z x w z w
41 40 sps-o x x = z x w z w
42 41 imbi2d x x = z x = y x w x = y z w
43 42 dral2-o x x = z x x = y x w x x = y z w
44 41 43 imbi12d x x = z x w x x = y x w z w x x = y z w
45 44 ad2antrr x x = z ¬ x x = w ¬ x x = y x = y x w x x = y x w z w x x = y z w
46 39 45 mpbid x x = z ¬ x x = w ¬ x x = y x = y z w x x = y z w
47 46 exp32 x x = z ¬ x x = w ¬ x x = y x = y z w x x = y z w
48 elequ2 x = y z x z y
49 48 ad2antll ¬ x x = z ¬ x x = y x = y z x z y
50 ax-c14 ¬ x x = z ¬ x x = y z y x z y
51 50 imp ¬ x x = z ¬ x x = y z y x z y
52 51 adantrr ¬ x x = z ¬ x x = y x = y z y x z y
53 48 biimprcd z y x = y z x
54 53 alimi x z y x x = y z x
55 52 54 syl6 ¬ x x = z ¬ x x = y x = y z y x x = y z x
56 49 55 sylbid ¬ x x = z ¬ x x = y x = y z x x x = y z x
57 56 adantlr ¬ x x = z x x = w ¬ x x = y x = y z x x x = y z x
58 19 sps-o x x = w z x z w
59 58 imbi2d x x = w x = y z x x = y z w
60 59 dral2-o x x = w x x = y z x x x = y z w
61 58 60 imbi12d x x = w z x x x = y z x z w x x = y z w
62 61 ad2antlr ¬ x x = z x x = w ¬ x x = y x = y z x x x = y z x z w x x = y z w
63 57 62 mpbid ¬ x x = z x x = w ¬ x x = y x = y z w x x = y z w
64 63 exp32 ¬ x x = z x x = w ¬ x x = y x = y z w x x = y z w
65 ax6ev u u = w
66 ax6ev v v = z
67 ax-1 v u x = y v u
68 67 alrimiv v u x x = y v u
69 elequ1 v = z v u z u
70 elequ2 u = w z u z w
71 69 70 sylan9bb v = z u = w v u z w
72 71 adantl ¬ x x = z ¬ x x = w v = z u = w v u z w
73 dveeq2-o ¬ x x = z v = z x v = z
74 dveeq2-o ¬ x x = w u = w x u = w
75 73 74 im2anan9 ¬ x x = z ¬ x x = w v = z u = w x v = z x u = w
76 75 imp ¬ x x = z ¬ x x = w v = z u = w x v = z x u = w
77 19.26 x v = z u = w x v = z x u = w
78 76 77 sylibr ¬ x x = z ¬ x x = w v = z u = w x v = z u = w
79 nfa1-o x x v = z u = w
80 71 sps-o x v = z u = w v u z w
81 80 imbi2d x v = z u = w x = y v u x = y z w
82 79 81 albid x v = z u = w x x = y v u x x = y z w
83 78 82 syl ¬ x x = z ¬ x x = w v = z u = w x x = y v u x x = y z w
84 72 83 imbi12d ¬ x x = z ¬ x x = w v = z u = w v u x x = y v u z w x x = y z w
85 68 84 mpbii ¬ x x = z ¬ x x = w v = z u = w z w x x = y z w
86 85 exp32 ¬ x x = z ¬ x x = w v = z u = w z w x x = y z w
87 86 exlimdv ¬ x x = z ¬ x x = w v v = z u = w z w x x = y z w
88 66 87 mpi ¬ x x = z ¬ x x = w u = w z w x x = y z w
89 88 exlimdv ¬ x x = z ¬ x x = w u u = w z w x x = y z w
90 65 89 mpi ¬ x x = z ¬ x x = w z w x x = y z w
91 90 a1d ¬ x x = z ¬ x x = w x = y z w x x = y z w
92 91 a1d ¬ x x = z ¬ x x = w ¬ x x = y x = y z w x x = y z w
93 29 47 64 92 4cases ¬ x x = y x = y z w x x = y z w