Metamath Proof Explorer


Theorem ax12eq

Description: Basis step for constructing a substitution instance of ax-c15 without using ax-c15 . Atomic formula for equality predicate. (Contributed by NM, 22-Jan-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ax12eq ¬ x x = y x = y z = w x x = y z = w

Proof

Step Hyp Ref Expression
1 19.26 x x = z x = w x x = z x x = w
2 equid x = x
3 2 a1i x = y x = x
4 3 ax-gen x x = y x = x
5 4 a1i x = x x x = y x = x
6 equequ1 x = z x = x z = x
7 equequ2 x = w z = x z = w
8 6 7 sylan9bb x = z x = w x = x z = w
9 8 sps-o x x = z x = w x = x z = w
10 nfa1-o x x x = z x = w
11 9 imbi2d x x = z x = w x = y x = x x = y z = w
12 10 11 albid x x = z x = w x x = y x = x x x = y z = w
13 9 12 imbi12d x x = z x = w x = x x x = y x = x z = w x x = y z = w
14 13 adantr x x = z x = w ¬ x x = y x = y x = x x x = y x = x z = w x x = y z = w
15 5 14 mpbii x x = z x = w ¬ x x = y x = y z = w x x = y z = w
16 15 exp32 x x = z x = w ¬ x x = y x = y z = w x x = y z = w
17 1 16 sylbir x x = z x x = w ¬ x x = y x = y z = w x x = y z = w
18 equequ1 x = y x = w y = w
19 18 ad2antll ¬ x x = w ¬ x x = y x = y x = w y = w
20 axc9 ¬ x x = y ¬ x x = w y = w x y = w
21 20 impcom ¬ x x = w ¬ x x = y y = w x y = w
22 21 adantrr ¬ x x = w ¬ x x = y x = y y = w x y = w
23 equtrr y = w x = y x = w
24 23 alimi x y = w x x = y x = w
25 22 24 syl6 ¬ x x = w ¬ x x = y x = y y = w x x = y x = w
26 19 25 sylbid ¬ x x = w ¬ x x = y x = y x = w x x = y x = w
27 26 adantll x x = z ¬ x x = w ¬ x x = y x = y x = w x x = y x = w
28 equequ1 x = z x = w z = w
29 28 sps-o x x = z x = w z = w
30 29 imbi2d x x = z x = y x = w x = y z = w
31 30 dral2-o x x = z x x = y x = w x x = y z = w
32 29 31 imbi12d x x = z x = w x x = y x = w z = w x x = y z = w
33 32 ad2antrr x x = z ¬ x x = w ¬ x x = y x = y x = w x x = y x = w z = w x x = y z = w
34 27 33 mpbid x x = z ¬ x x = w ¬ x x = y x = y z = w x x = y z = w
35 34 exp32 x x = z ¬ x x = w ¬ x x = y x = y z = w x x = y z = w
36 equequ2 x = y z = x z = y
37 36 ad2antll ¬ x x = z ¬ x x = y x = y z = x z = y
38 axc9 ¬ x x = z ¬ x x = y z = y x z = y
39 38 imp ¬ x x = z ¬ x x = y z = y x z = y
40 39 adantrr ¬ x x = z ¬ x x = y x = y z = y x z = y
41 36 biimprcd z = y x = y z = x
42 41 alimi x z = y x x = y z = x
43 40 42 syl6 ¬ x x = z ¬ x x = y x = y z = y x x = y z = x
44 37 43 sylbid ¬ x x = z ¬ x x = y x = y z = x x x = y z = x
45 44 adantlr ¬ x x = z x x = w ¬ x x = y x = y z = x x x = y z = x
46 7 sps-o x x = w z = x z = w
47 46 imbi2d x x = w x = y z = x x = y z = w
48 47 dral2-o x x = w x x = y z = x x x = y z = w
49 46 48 imbi12d x x = w z = x x x = y z = x z = w x x = y z = w
50 49 ad2antlr ¬ x x = z x x = w ¬ x x = y x = y z = x x x = y z = x z = w x x = y z = w
51 45 50 mpbid ¬ x x = z x x = w ¬ x x = y x = y z = w x x = y z = w
52 51 exp32 ¬ x x = z x x = w ¬ x x = y x = y z = w x x = y z = w
53 ax6ev u u = w
54 ax6ev v v = z
55 ax-1 v = u x = y v = u
56 55 alrimiv v = u x x = y v = u
57 equequ1 v = z v = u z = u
58 equequ2 u = w z = u z = w
59 57 58 sylan9bb v = z u = w v = u z = w
60 59 adantl ¬ x x = z ¬ x x = w v = z u = w v = u z = w
61 dveeq2-o ¬ x x = z v = z x v = z
62 dveeq2-o ¬ x x = w u = w x u = w
63 61 62 im2anan9 ¬ x x = z ¬ x x = w v = z u = w x v = z x u = w
64 63 imp ¬ x x = z ¬ x x = w v = z u = w x v = z x u = w
65 19.26 x v = z u = w x v = z x u = w
66 64 65 sylibr ¬ x x = z ¬ x x = w v = z u = w x v = z u = w
67 nfa1-o x x v = z u = w
68 59 sps-o x v = z u = w v = u z = w
69 68 imbi2d x v = z u = w x = y v = u x = y z = w
70 67 69 albid x v = z u = w x x = y v = u x x = y z = w
71 66 70 syl ¬ x x = z ¬ x x = w v = z u = w x x = y v = u x x = y z = w
72 60 71 imbi12d ¬ x x = z ¬ x x = w v = z u = w v = u x x = y v = u z = w x x = y z = w
73 56 72 mpbii ¬ x x = z ¬ x x = w v = z u = w z = w x x = y z = w
74 73 exp32 ¬ x x = z ¬ x x = w v = z u = w z = w x x = y z = w
75 74 exlimdv ¬ x x = z ¬ x x = w v v = z u = w z = w x x = y z = w
76 54 75 mpi ¬ x x = z ¬ x x = w u = w z = w x x = y z = w
77 76 exlimdv ¬ x x = z ¬ x x = w u u = w z = w x x = y z = w
78 53 77 mpi ¬ x x = z ¬ x x = w z = w x x = y z = w
79 78 a1d ¬ x x = z ¬ x x = w x = y z = w x x = y z = w
80 79 a1d ¬ x x = z ¬ x x = w ¬ x x = y x = y z = w x x = y z = w
81 17 35 52 80 4cases ¬ x x = y x = y z = w x x = y z = w