Metamath Proof Explorer


Theorem ax12ev2

Description: Version of ax12v2 rewritten to use an existential quantifier. One direction of sbalex without the universal quantifier, avoiding ax-10 . (Contributed by SN, 14-Aug-2025)

Ref Expression
Assertion ax12ev2 x x = y φ x = y φ

Proof

Step Hyp Ref Expression
1 exnalimn x x = y φ ¬ x x = y ¬ φ
2 ax12v2 x = y ¬ φ x x = y ¬ φ
3 2 con1d x = y ¬ x x = y ¬ φ φ
4 1 3 biimtrid x = y x x = y φ φ
5 4 com12 x x = y φ x = y φ