Metamath Proof Explorer


Theorem ax12inda

Description: Induction step for constructing a substitution instance of ax-c15 without using ax-c15 . Quantification case. (When z and y are distinct, ax12inda2 may be used instead to avoid the dummy variable w in the proof.) (Contributed by NM, 24-Jan-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ax12inda.1 ¬ x x = w x = w φ x x = w φ
Assertion ax12inda ¬ x x = y x = y z φ x x = y z φ

Proof

Step Hyp Ref Expression
1 ax12inda.1 ¬ x x = w x = w φ x x = w φ
2 ax6ev w w = y
3 1 ax12inda2 ¬ x x = w x = w z φ x x = w z φ
4 dveeq2-o ¬ x x = y w = y x w = y
5 4 imp ¬ x x = y w = y x w = y
6 hba1-o x w = y x x w = y
7 equequ2 w = y x = w x = y
8 7 sps-o x w = y x = w x = y
9 6 8 albidh x w = y x x = w x x = y
10 9 notbid x w = y ¬ x x = w ¬ x x = y
11 5 10 syl ¬ x x = y w = y ¬ x x = w ¬ x x = y
12 7 adantl ¬ x x = y w = y x = w x = y
13 8 imbi1d x w = y x = w z φ x = y z φ
14 6 13 albidh x w = y x x = w z φ x x = y z φ
15 5 14 syl ¬ x x = y w = y x x = w z φ x x = y z φ
16 15 imbi2d ¬ x x = y w = y z φ x x = w z φ z φ x x = y z φ
17 12 16 imbi12d ¬ x x = y w = y x = w z φ x x = w z φ x = y z φ x x = y z φ
18 11 17 imbi12d ¬ x x = y w = y ¬ x x = w x = w z φ x x = w z φ ¬ x x = y x = y z φ x x = y z φ
19 3 18 mpbii ¬ x x = y w = y ¬ x x = y x = y z φ x x = y z φ
20 19 ex ¬ x x = y w = y ¬ x x = y x = y z φ x x = y z φ
21 20 exlimdv ¬ x x = y w w = y ¬ x x = y x = y z φ x x = y z φ
22 2 21 mpi ¬ x x = y ¬ x x = y x = y z φ x x = y z φ
23 22 pm2.43i ¬ x x = y x = y z φ x x = y z φ