Metamath Proof Explorer


Theorem ax12inda2

Description: Induction step for constructing a substitution instance of ax-c15 without using ax-c15 . Quantification case. When z and y are distinct, this theorem avoids the dummy variables needed by the more general ax12inda . (Contributed by NM, 24-Jan-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ax12inda2.1 ¬ x x = y x = y φ x x = y φ
Assertion ax12inda2 ¬ x x = y x = y z φ x x = y z φ

Proof

Step Hyp Ref Expression
1 ax12inda2.1 ¬ x x = y x = y φ x x = y φ
2 ax-1 z φ x = y z φ
3 axc16g-o y y = z x = y z φ x x = y z φ
4 2 3 syl5 y y = z z φ x x = y z φ
5 4 a1d y y = z x = y z φ x x = y z φ
6 5 a1d y y = z ¬ x x = y x = y z φ x x = y z φ
7 1 ax12indalem ¬ y y = z ¬ x x = y x = y z φ x x = y z φ
8 6 7 pm2.61i ¬ x x = y x = y z φ x x = y z φ