Metamath Proof Explorer


Theorem ax12inda2ALT

Description: Alternate proof of ax12inda2 , slightly more direct and not requiring ax-c16 . (Contributed by NM, 4-May-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ax12inda2.1 ¬ x x = y x = y φ x x = y φ
Assertion ax12inda2ALT ¬ x x = y x = y z φ x x = y z φ

Proof

Step Hyp Ref Expression
1 ax12inda2.1 ¬ x x = y x = y φ x x = y φ
2 ax-1 x φ x = y x φ
3 2 axc4i-o x φ x x = y x φ
4 3 a1i z z = x x φ x x = y x φ
5 biidd z z = x φ φ
6 5 dral1-o z z = x z φ x φ
7 6 imbi2d z z = x x = y z φ x = y x φ
8 7 dral2-o z z = x x x = y z φ x x = y x φ
9 4 6 8 3imtr4d z z = x z φ x x = y z φ
10 9 aecoms-o x x = z z φ x x = y z φ
11 10 a1d x x = z x = y z φ x x = y z φ
12 11 a1d x x = z ¬ x x = y x = y z φ x x = y z φ
13 simplr ¬ x x = z ¬ x x = y x = y ¬ x x = y
14 dveeq1-o ¬ z z = x x = y z x = y
15 14 naecoms-o ¬ x x = z x = y z x = y
16 15 imp ¬ x x = z x = y z x = y
17 16 adantlr ¬ x x = z ¬ x x = y x = y z x = y
18 hbnae-o ¬ x x = y z ¬ x x = y
19 hba1-o z x = y z z x = y
20 18 19 hban ¬ x x = y z x = y z ¬ x x = y z x = y
21 ax-c5 z x = y x = y
22 1 imp ¬ x x = y x = y φ x x = y φ
23 21 22 sylan2 ¬ x x = y z x = y φ x x = y φ
24 20 23 alimdh ¬ x x = y z x = y z φ z x x = y φ
25 13 17 24 syl2anc ¬ x x = z ¬ x x = y x = y z φ z x x = y φ
26 ax-11 z x x = y φ x z x = y φ
27 hbnae-o ¬ x x = z x ¬ x x = z
28 hbnae-o ¬ x x = z z ¬ x x = z
29 28 15 nf5dh ¬ x x = z z x = y
30 19.21t z x = y z x = y φ x = y z φ
31 29 30 syl ¬ x x = z z x = y φ x = y z φ
32 27 31 albidh ¬ x x = z x z x = y φ x x = y z φ
33 26 32 syl5ib ¬ x x = z z x x = y φ x x = y z φ
34 33 ad2antrr ¬ x x = z ¬ x x = y x = y z x x = y φ x x = y z φ
35 25 34 syld ¬ x x = z ¬ x x = y x = y z φ x x = y z φ
36 35 exp31 ¬ x x = z ¬ x x = y x = y z φ x x = y z φ
37 12 36 pm2.61i ¬ x x = y x = y z φ x x = y z φ