Metamath Proof Explorer


Theorem ax12v2-o

Description: Rederivation of ax-c15 from ax12v (without using ax-c15 or the full ax-12 ). Thus, the hypothesis ( ax12v ) provides an alternate axiom that can be used in place of ax-c15 . See also axc15 . (Contributed by NM, 2-Feb-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ax12v2-o.1 x = z φ x x = z φ
Assertion ax12v2-o ¬ x x = y x = y φ x x = y φ

Proof

Step Hyp Ref Expression
1 ax12v2-o.1 x = z φ x x = z φ
2 ax6ev z z = y
3 equequ2 z = y x = z x = y
4 3 adantl ¬ x x = y z = y x = z x = y
5 dveeq2-o ¬ x x = y z = y x z = y
6 5 imp ¬ x x = y z = y x z = y
7 nfa1-o x x z = y
8 3 imbi1d z = y x = z φ x = y φ
9 8 sps-o x z = y x = z φ x = y φ
10 7 9 albid x z = y x x = z φ x x = y φ
11 6 10 syl ¬ x x = y z = y x x = z φ x x = y φ
12 11 imbi2d ¬ x x = y z = y φ x x = z φ φ x x = y φ
13 4 12 imbi12d ¬ x x = y z = y x = z φ x x = z φ x = y φ x x = y φ
14 1 13 mpbii ¬ x x = y z = y x = y φ x x = y φ
15 14 ex ¬ x x = y z = y x = y φ x x = y φ
16 15 exlimdv ¬ x x = y z z = y x = y φ x x = y φ
17 2 16 mpi ¬ x x = y x = y φ x x = y φ