Metamath Proof Explorer


Theorem ax12vALT

Description: Alternate proof of ax12v2 , shorter, but depending on more axioms. (Contributed by NM, 5-Aug-1993) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion ax12vALT x = y φ x x = y φ

Proof

Step Hyp Ref Expression
1 ax-1 φ x = y φ
2 axc16 x x = y x = y φ x x = y φ
3 1 2 syl5 x x = y φ x x = y φ
4 3 a1d x x = y x = y φ x x = y φ
5 axc15 ¬ x x = y x = y φ x x = y φ
6 4 5 pm2.61i x = y φ x x = y φ