Metamath Proof Explorer


Theorem ax13dgen3

Description: Degenerate instance of ax-13 where bundled variables y and z have a common substitution. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 13-Apr-2017)

Ref Expression
Assertion ax13dgen3 ¬ x = y y = y x y = y

Proof

Step Hyp Ref Expression
1 equid y = y
2 1 ax-gen x y = y
3 2 2a1i ¬ x = y y = y x y = y