Metamath Proof Explorer


Theorem ax13lem2

Description: Lemma for nfeqf2 . This lemma is equivalent to ax13v with one distinct variable constraint removed. (Contributed by Wolf Lammen, 8-Sep-2018) Reduce axiom usage. (Revised by Wolf Lammen, 18-Oct-2020) (New usage is discouraged.)

Ref Expression
Assertion ax13lem2 ¬ x = y x z = y z = y

Proof

Step Hyp Ref Expression
1 ax13lem1 ¬ x = y w = y x w = y
2 equeucl z = y w = y z = w
3 2 eximi x z = y x w = y z = w
4 19.36v x w = y z = w x w = y z = w
5 3 4 sylib x z = y x w = y z = w
6 1 5 syl9 ¬ x = y x z = y w = y z = w
7 6 alrimdv ¬ x = y x z = y w w = y z = w
8 equequ2 w = y z = w z = y
9 8 equsalvw w w = y z = w z = y
10 7 9 syl6ib ¬ x = y x z = y z = y