| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl2l |
|
| 2 |
|
fveecn |
|
| 3 |
1 2
|
sylancom |
|
| 4 |
|
simpl2r |
|
| 5 |
|
fveecn |
|
| 6 |
4 5
|
sylancom |
|
| 7 |
|
elicc01 |
|
| 8 |
7
|
simp1bi |
|
| 9 |
8
|
adantr |
|
| 10 |
9
|
3ad2ant3 |
|
| 11 |
10
|
recnd |
|
| 12 |
11
|
adantr |
|
| 13 |
|
fveq2 |
|
| 14 |
|
fveq2 |
|
| 15 |
14
|
oveq2d |
|
| 16 |
|
fveq2 |
|
| 17 |
16
|
oveq2d |
|
| 18 |
15 17
|
oveq12d |
|
| 19 |
13 18
|
eqeq12d |
|
| 20 |
19
|
rspccva |
|
| 21 |
20
|
adantll |
|
| 22 |
21
|
3ad2antl3 |
|
| 23 |
|
oveq2 |
|
| 24 |
23
|
oveq1d |
|
| 25 |
|
subdi |
|
| 26 |
25
|
3coml |
|
| 27 |
|
ax-1cn |
|
| 28 |
|
subcl |
|
| 29 |
27 28
|
mpan |
|
| 30 |
29
|
adantl |
|
| 31 |
|
simpl |
|
| 32 |
|
subdir |
|
| 33 |
27 30 31 32
|
mp3an2i |
|
| 34 |
|
nncan |
|
| 35 |
27 34
|
mpan |
|
| 36 |
35
|
oveq1d |
|
| 37 |
36
|
adantl |
|
| 38 |
|
mullid |
|
| 39 |
38
|
oveq1d |
|
| 40 |
39
|
adantr |
|
| 41 |
33 37 40
|
3eqtr3rd |
|
| 42 |
41
|
oveq1d |
|
| 43 |
42
|
3adant2 |
|
| 44 |
|
simp1 |
|
| 45 |
|
mulcl |
|
| 46 |
29 45
|
sylan |
|
| 47 |
46
|
ancoms |
|
| 48 |
47
|
3adant2 |
|
| 49 |
|
mulcl |
|
| 50 |
49
|
ancoms |
|
| 51 |
50
|
3adant1 |
|
| 52 |
44 48 51
|
subsub4d |
|
| 53 |
26 43 52
|
3eqtr2rd |
|
| 54 |
53
|
oveq1d |
|
| 55 |
|
simp3 |
|
| 56 |
|
subcl |
|
| 57 |
56
|
3adant3 |
|
| 58 |
55 57
|
sqmuld |
|
| 59 |
54 58
|
eqtrd |
|
| 60 |
24 59
|
sylan9eqr |
|
| 61 |
3 6 12 22 60
|
syl31anc |
|
| 62 |
61
|
sumeq2dv |
|
| 63 |
|
fzfid |
|
| 64 |
8
|
resqcld |
|
| 65 |
64
|
recnd |
|
| 66 |
65
|
adantr |
|
| 67 |
66
|
3ad2ant3 |
|
| 68 |
2
|
3adant1 |
|
| 69 |
68
|
3adant2r |
|
| 70 |
5
|
3adant1 |
|
| 71 |
70
|
3adant2l |
|
| 72 |
69 71
|
subcld |
|
| 73 |
72
|
sqcld |
|
| 74 |
73
|
3expa |
|
| 75 |
74
|
3adantl3 |
|
| 76 |
63 67 75
|
fsummulc2 |
|
| 77 |
62 76
|
eqtr4d |
|