| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl2l |
|
| 2 |
|
fveecn |
|
| 3 |
1 2
|
sylancom |
|
| 4 |
|
simpl2r |
|
| 5 |
|
fveecn |
|
| 6 |
4 5
|
sylancom |
|
| 7 |
|
elicc01 |
|
| 8 |
7
|
simp1bi |
|
| 9 |
8
|
recnd |
|
| 10 |
9
|
adantr |
|
| 11 |
10
|
3ad2ant3 |
|
| 12 |
11
|
adantr |
|
| 13 |
|
fveq2 |
|
| 14 |
|
fveq2 |
|
| 15 |
14
|
oveq2d |
|
| 16 |
|
fveq2 |
|
| 17 |
16
|
oveq2d |
|
| 18 |
15 17
|
oveq12d |
|
| 19 |
13 18
|
eqeq12d |
|
| 20 |
19
|
rspccva |
|
| 21 |
20
|
adantll |
|
| 22 |
21
|
3ad2antl3 |
|
| 23 |
|
oveq1 |
|
| 24 |
23
|
oveq1d |
|
| 25 |
|
ax-1cn |
|
| 26 |
|
subcl |
|
| 27 |
25 26
|
mpan |
|
| 28 |
27
|
3ad2ant3 |
|
| 29 |
|
simp1 |
|
| 30 |
28 29
|
mulcld |
|
| 31 |
|
simp3 |
|
| 32 |
|
simp2 |
|
| 33 |
31 32
|
mulcld |
|
| 34 |
30 33 32
|
addsubassd |
|
| 35 |
|
subdi |
|
| 36 |
27 35
|
syl3an1 |
|
| 37 |
36
|
3coml |
|
| 38 |
|
subdir |
|
| 39 |
25 38
|
mp3an1 |
|
| 40 |
39
|
ancoms |
|
| 41 |
40
|
3adant1 |
|
| 42 |
|
mullid |
|
| 43 |
42
|
oveq1d |
|
| 44 |
43
|
3ad2ant2 |
|
| 45 |
41 44
|
eqtrd |
|
| 46 |
45
|
oveq2d |
|
| 47 |
30 32 33
|
subsub2d |
|
| 48 |
37 46 47
|
3eqtrd |
|
| 49 |
34 48
|
eqtr4d |
|
| 50 |
49
|
oveq1d |
|
| 51 |
|
subcl |
|
| 52 |
51
|
3adant3 |
|
| 53 |
28 52
|
sqmuld |
|
| 54 |
50 53
|
eqtrd |
|
| 55 |
24 54
|
sylan9eqr |
|
| 56 |
3 6 12 22 55
|
syl31anc |
|
| 57 |
56
|
sumeq2dv |
|
| 58 |
|
fzfid |
|
| 59 |
|
1re |
|
| 60 |
|
resubcl |
|
| 61 |
59 8 60
|
sylancr |
|
| 62 |
61
|
resqcld |
|
| 63 |
62
|
recnd |
|
| 64 |
63
|
adantr |
|
| 65 |
64
|
3ad2ant3 |
|
| 66 |
2
|
3adant1 |
|
| 67 |
66
|
3adant2r |
|
| 68 |
5
|
3adant1 |
|
| 69 |
68
|
3adant2l |
|
| 70 |
67 69
|
subcld |
|
| 71 |
70
|
sqcld |
|
| 72 |
71
|
3expa |
|
| 73 |
72
|
3adantl3 |
|
| 74 |
58 65 73
|
fsummulc2 |
|
| 75 |
57 74
|
eqtr4d |
|