| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
|
1m0e1 |
|
| 3 |
1 2
|
eqtrdi |
|
| 4 |
3
|
oveq1d |
|
| 5 |
|
oveq1 |
|
| 6 |
4 5
|
oveq12d |
|
| 7 |
6
|
eqeq2d |
|
| 8 |
7
|
ralbidv |
|
| 9 |
8
|
biimpac |
|
| 10 |
|
eqeefv |
|
| 11 |
10
|
3adant1 |
|
| 12 |
11
|
3adant3r3 |
|
| 13 |
|
simplr1 |
|
| 14 |
|
fveecn |
|
| 15 |
13 14
|
sylancom |
|
| 16 |
|
simplr3 |
|
| 17 |
|
fveecn |
|
| 18 |
16 17
|
sylancom |
|
| 19 |
|
mullid |
|
| 20 |
|
mul02 |
|
| 21 |
19 20
|
oveqan12d |
|
| 22 |
|
addrid |
|
| 23 |
22
|
adantr |
|
| 24 |
21 23
|
eqtrd |
|
| 25 |
15 18 24
|
syl2anc |
|
| 26 |
25
|
eqeq1d |
|
| 27 |
|
eqcom |
|
| 28 |
26 27
|
bitr3di |
|
| 29 |
28
|
ralbidva |
|
| 30 |
12 29
|
bitrd |
|
| 31 |
9 30
|
imbitrrid |
|
| 32 |
31
|
expdimp |
|
| 33 |
32
|
necon3d |
|
| 34 |
33
|
3impia |
|