Metamath Proof Explorer


Theorem ax6e2ndeq

Description: "At least two sets exist" expressed in the form of dtru is logically equivalent to the same expressed in a form similar to ax6e if dtru is false implies u = v . ax6e2ndeq is derived from ax6e2ndeqVD . (Contributed by Alan Sare, 25-Mar-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ax6e2ndeq ¬ x x = y u = v x y x = u y = v

Proof

Step Hyp Ref Expression
1 ax6e2nd ¬ x x = y x y x = u y = v
2 ax6e2eq x x = y u = v x y x = u y = v
3 1 a1d ¬ x x = y u = v x y x = u y = v
4 2 3 pm2.61i u = v x y x = u y = v
5 1 4 jaoi ¬ x x = y u = v x y x = u y = v
6 olc u = v ¬ x x = y u = v
7 6 a1d u = v x y x = u y = v ¬ x x = y u = v
8 excom x y x = u y = v y x x = u y = v
9 neeq1 x = u x v u v
10 9 biimprcd u v x = u x v
11 10 adantrd u v x = u y = v x v
12 simpr x = u y = v y = v
13 12 a1i u v x = u y = v y = v
14 neeq2 y = v x y x v
15 14 biimprcd x v y = v x y
16 11 13 15 syl6c u v x = u y = v x y
17 sp x x = y x = y
18 17 necon3ai x y ¬ x x = y
19 16 18 syl6 u v x = u y = v ¬ x x = y
20 19 eximdv u v x x = u y = v x ¬ x x = y
21 nfnae x ¬ x x = y
22 21 19.9 x ¬ x x = y ¬ x x = y
23 20 22 syl6ib u v x x = u y = v ¬ x x = y
24 23 eximdv u v y x x = u y = v y ¬ x x = y
25 8 24 syl5bi u v x y x = u y = v y ¬ x x = y
26 nfnae y ¬ x x = y
27 26 19.9 y ¬ x x = y ¬ x x = y
28 25 27 syl6ib u v x y x = u y = v ¬ x x = y
29 orc ¬ x x = y ¬ x x = y u = v
30 28 29 syl6 u v x y x = u y = v ¬ x x = y u = v
31 7 30 pm2.61ine x y x = u y = v ¬ x x = y u = v
32 5 31 impbii ¬ x x = y u = v x y x = u y = v