Metamath Proof Explorer


Theorem axac

Description: Derive ax-ac from ax-ac2 . Note that ax-reg is used by the proof. (Contributed by NM, 19-Dec-2016) (Proof modification is discouraged.)

Ref Expression
Assertion axac y z w z w w x v u t u w w t u t t y u = v

Proof

Step Hyp Ref Expression
1 axac3 CHOICE
2 dfac0 CHOICE x y z w z w w x v u t u w w t u t t y u = v
3 1 2 mpbi x y z w z w w x v u t u w w t u t t y u = v
4 3 spi y z w z w w x v u t u w w t u t t y u = v