Metamath Proof Explorer


Theorem axaddrcl

Description: Closure law for addition in the real subfield of complex numbers. Axiom 5 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addrcl be used later. Instead, in most cases use readdcl . (Contributed by NM, 31-Mar-1996) (New usage is discouraged.)

Ref Expression
Assertion axaddrcl A B A + B

Proof

Step Hyp Ref Expression
1 elreal A x 𝑹 x 0 𝑹 = A
2 elreal B y 𝑹 y 0 𝑹 = B
3 oveq1 x 0 𝑹 = A x 0 𝑹 + y 0 𝑹 = A + y 0 𝑹
4 3 eleq1d x 0 𝑹 = A x 0 𝑹 + y 0 𝑹 A + y 0 𝑹
5 oveq2 y 0 𝑹 = B A + y 0 𝑹 = A + B
6 5 eleq1d y 0 𝑹 = B A + y 0 𝑹 A + B
7 addresr x 𝑹 y 𝑹 x 0 𝑹 + y 0 𝑹 = x + 𝑹 y 0 𝑹
8 addclsr x 𝑹 y 𝑹 x + 𝑹 y 𝑹
9 opelreal x + 𝑹 y 0 𝑹 x + 𝑹 y 𝑹
10 8 9 sylibr x 𝑹 y 𝑹 x + 𝑹 y 0 𝑹
11 7 10 eqeltrd x 𝑹 y 𝑹 x 0 𝑹 + y 0 𝑹
12 1 2 4 6 11 2gencl A B A + B