Metamath Proof Explorer


Theorem axc14

Description: Axiom ax-c14 is redundant if we assume ax-5 . Remark 9.6 in Megill p. 448 (p. 16 of the preprint), regarding axiom scheme C14'.

Note that w is a dummy variable introduced in the proof. Its purpose is to satisfy the distinct variable requirements of dveel2 and ax-5 . By the end of the proof it has vanished, and the final theorem has no distinct variable requirements. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 29-Jun-1995) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axc14 ¬ z z = x ¬ z z = y x y z x y

Proof

Step Hyp Ref Expression
1 hbn1 ¬ z z = y z ¬ z z = y
2 dveel2 ¬ z z = y w y z w y
3 1 2 hbim1 ¬ z z = y w y z ¬ z z = y w y
4 elequ1 w = x w y x y
5 4 imbi2d w = x ¬ z z = y w y ¬ z z = y x y
6 3 5 dvelim ¬ z z = x ¬ z z = y x y z ¬ z z = y x y
7 nfa1 z z z = y
8 7 nfn z ¬ z z = y
9 8 19.21 z ¬ z z = y x y ¬ z z = y z x y
10 6 9 syl6ib ¬ z z = x ¬ z z = y x y ¬ z z = y z x y
11 10 pm2.86d ¬ z z = x ¬ z z = y x y z x y