Metamath Proof Explorer


Theorem axc16g-o

Description: A generalization of Axiom ax-c16 . Version of axc16g using ax-c11 . (Contributed by NM, 15-May-1993) (Proof shortened by Andrew Salmon, 25-May-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axc16g-o x x = y φ z φ

Proof

Step Hyp Ref Expression
1 aev-o x x = y z z = x
2 ax-c16 x x = y φ x φ
3 biidd z z = x φ φ
4 3 dral1-o z z = x z φ x φ
5 4 biimprd z z = x x φ z φ
6 1 2 5 sylsyld x x = y φ z φ