Metamath Proof Explorer


Theorem axc16gALT

Description: Alternate proof of axc16g that uses df-sb and requires ax-10 , ax-11 , ax-13 . (Contributed by NM, 15-May-1993) (Proof shortened by Andrew Salmon, 25-May-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axc16gALT x x = y φ z φ

Proof

Step Hyp Ref Expression
1 aev x x = y z z = x
2 axc16ALT x x = y φ x φ
3 biidd z z = x φ φ
4 3 dral1 z z = x z φ x φ
5 4 biimprd z z = x x φ z φ
6 1 2 5 sylsyld x x = y φ z φ