Metamath Proof Explorer


Theorem axc16gb

Description: Biconditional strengthening of axc16g . (Contributed by NM, 15-May-1993)

Ref Expression
Assertion axc16gb x x = y φ z φ

Proof

Step Hyp Ref Expression
1 axc16g x x = y φ z φ
2 sp z φ φ
3 1 2 impbid1 x x = y φ z φ