Metamath Proof Explorer


Theorem axc4

Description: Show that the original axiom ax-c4 can be derived from ax-4 ( alim ), ax-10 ( hbn1 ), sp and propositional calculus. See ax4fromc4 for the rederivation of ax-4 from ax-c4 .

Part of the proof is based on the proof of Lemma 22 of Monk2 p. 114. (Contributed by NM, 21-May-2008) (Proof modification is discouraged.)

Ref Expression
Assertion axc4 x x φ ψ x φ x ψ

Proof

Step Hyp Ref Expression
1 sp x ¬ x φ ¬ x φ
2 1 con2i x φ ¬ x ¬ x φ
3 hbn1 ¬ x ¬ x φ x ¬ x ¬ x φ
4 hbn1 ¬ x φ x ¬ x φ
5 4 con1i ¬ x ¬ x φ x φ
6 5 alimi x ¬ x ¬ x φ x x φ
7 2 3 6 3syl x φ x x φ
8 alim x x φ ψ x x φ x ψ
9 7 8 syl5 x x φ ψ x φ x ψ