Metamath Proof Explorer


Theorem axc4i

Description: Inference version of axc4 . (Contributed by NM, 3-Jan-1993)

Ref Expression
Hypothesis axc4i.1 x φ ψ
Assertion axc4i x φ x ψ

Proof

Step Hyp Ref Expression
1 axc4i.1 x φ ψ
2 nfa1 x x φ
3 2 1 alrimi x φ x ψ