Metamath Proof Explorer


Theorem axc5c711

Description: Proof of a single axiom that can replace ax-c5 , ax-c7 , and ax-11 in a subsystem that includes these axioms plus ax-c4 and ax-gen (and propositional calculus). See axc5c711toc5 , axc5c711toc7 , and axc5c711to11 for the rederivation of those axioms. This theorem extends the idea in Scott Fenton's axc5c7 . (Contributed by NM, 18-Nov-2006) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axc5c711 x y ¬ x y φ x φ φ

Proof

Step Hyp Ref Expression
1 ax-c5 y φ φ
2 ax10fromc7 ¬ y φ y ¬ y φ
3 ax-c7 ¬ x ¬ x y φ y φ
4 3 con1i ¬ y φ x ¬ x y φ
5 4 alimi y ¬ y φ y x ¬ x y φ
6 ax-11 y x ¬ x y φ x y ¬ x y φ
7 2 5 6 3syl ¬ y φ x y ¬ x y φ
8 1 7 nsyl4 ¬ x y ¬ x y φ φ
9 ax-c5 x φ φ
10 8 9 ja x y ¬ x y φ x φ φ