Metamath Proof Explorer


Theorem axc5c711toc5

Description: Rederivation of ax-c5 from axc5c711 . Only propositional calculus is used by the rederivation. (Contributed by NM, 19-Nov-2006) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axc5c711toc5 x φ φ

Proof

Step Hyp Ref Expression
1 ax-1 x φ x x ¬ x x φ x φ
2 axc5c711 x x ¬ x x φ x φ φ
3 1 2 syl x φ φ