Metamath Proof Explorer


Theorem axc5c711toc7

Description: Rederivation of ax-c7 from axc5c711 . Note that ax-c7 and ax-11 are not used by the rederivation. The use of alimi (which uses ax-c5 ) is allowed since we have already proved axc5c711toc5 . (Contributed by NM, 19-Nov-2006) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axc5c711toc7 ¬ x ¬ x φ φ

Proof

Step Hyp Ref Expression
1 hba1-o x φ x x φ
2 1 con3i ¬ x x φ ¬ x φ
3 2 alimi x ¬ x x φ x ¬ x φ
4 3 sps-o x x ¬ x x φ x ¬ x φ
5 4 con3i ¬ x ¬ x φ ¬ x x ¬ x x φ
6 pm2.21 ¬ x x ¬ x x φ x x ¬ x x φ x φ
7 axc5c711 x x ¬ x x φ x φ φ
8 5 6 7 3syl ¬ x ¬ x φ φ